5 学術誌等掲載論文

Chemosphere 278 (2021) 130224

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Two new skeletal analogues of saxitoxin found in the scallop, *Patinopecten yessoensis,* as possible metabolites of paralytic shellfish toxins

Satoshi Numano ^{a, b}, Yuta Kudo ^{a, c}, Yuko Cho ^a, Keiichi Konoki ^a, Yoshimasa Kaga ^d, Kazuo Nagasawa ^e, Mari Yotsu-Yamashita ^{a, *}

^a Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan

^b Iwate Prefectural Research Institute for Environmental Sciences and Public Health, 1-11-16 Kita-Iioka, Morioka, Iwate, 020-0857, Japan

^c Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan

^d Iwate Prefectural Inland Fisheries Technology Center, Yoriki, Matsuo, Iwate, 028-7302, Japan

e Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo,

. 184-8588, Japan

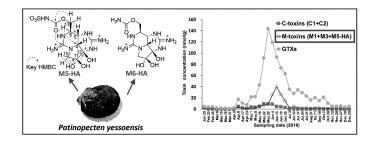
HIGHLIGHTS

- Two new saxitoxin analogues, M5-HA and M6-HA were found in scallop.
- Structures of M5-HA and M6-HA were elucidated by using NMR and chemical derivatization.
- M5-HA and M6-HA were predicted to be derived from C2 in scallop.
- Chronological analysis of PSTs supported that M1/M3/M5-HA are metabolites of C2.

ARTICLE INFO

Article history: Received 16 December 2020 Received in revised form 9 March 2021 Accepted 10 March 2021 Available online 15 March 2021

Handling Editor: J. de Boer


Keywords: Saxitoxin Paralytic shellfish toxins Scallop NMR Metabolites

* Corresponding author.

E-mail address: mari.yamashita.c1@tohoku.ac.jp (M. Yotsu-Yamashita).

https://doi.org/10.1016/j.chemosphere.2021.130224 0045-6535/© 2021 Elsevier Ltd. All rights reserved.

GRAPHICAL ABSTRACT

ABSTRACT

The scallop, *Patinopecten yessoensis*, was screened for new saxitoxin analogues to study the metabolism of paralytic shellfish toxins (PSTs), and this resulted in the discovery of two new analogues: M5-hemiaminal (HA) and M6-HA. M5-HA was isolated and its structure was determined by using NMR spectroscopy. It contains hydrogen at C-4 with opposite stereochemistry to that in saxitoxin, and a hemiaminal was formed between 9-NH₂ and the hydrated ketone at C-12 in α -orientation. This is the first reported structural feature in a natural saxitoxin analogue, whereas the same ring system has previously been reported in a synthetic saxitoxin analogue, FD-saxitoxin. Acid hydrolysis of the carbamoyl *N*-sulfate in M5-HA produced M6-HA which was also identified in *P. yessoensis* by using LC-MSMS. M5-HA was not synthetically produced from M1 (11-hydroxy gonyautoxin-5) and M3 (11,11-dihydroxy gonyautoxin-5) through incubation in aqueous buffers. Furthermore, PSTs in the hepatopancreas of *P. yessoensis*, cultured in a bay located in northeastern Japan, were chronologically analyzed in 2018. The highest concentrations, which provides evidence that M1/M3/M5-HA are metabolites of C-toxins. The

Environmental Science and Pollution Research 28(9), 11665-11671 (2021)

Effectiveness of household water purifiers in removing perfluoroalkyl substances from drinking water

Katsumi IWABUCHI, Itaru SATO

Abstract

Drinking water is one of the major exposure routes to Perfluoroalkyl substances (PFASs). These chemicals are scarcely removed by the conventional process in water purification plants. In the present study, four models of pitcher-type water purifiers (A-D) were tested to evaluate their removal effect on six PFASs including PFOS and PFOA. All of the water purifiers removed PFASs, but the efficiency was dependent on the models. Model C was most effective; more than 90% of all PFASs were removed through the recommended life of the filter cartridge. Model D was least effective; its removal efficiency declined below 50% by the end of the cartridge's life. When compared by the carbon chain length of PFASs, the removal efficiency was "C12 > C10 > C8 > C6" in all models. This study clearly demonstrates that household water purifiers are effective in decreasing the exposure to PFASs through drinking water.

Environmental Monitoring and Contaminants Research 1, 1-16 (2021)

Inflow and outflow loads of 484 daily-use chemicals in wastewater treatment plants across Japan

Kiwao KADOKAMI, Takashi MIYAWAKI, <u>Katsumi IWABUCHI</u>, Sokichi TAKAGI, Fumie ADACHI, Haruka IIDA, Kimiyo WATANABE, Yuki KOSUGI, Toshinari SUZUKI, Shinichiro NAGAHORA, Ruriko TAHARA, Tomoaki ORIHARA, Akifumi EGUCHI

Abstract

With the increasing number and volume of chemicals used in modern life, their adverse effects on human health and aquatic organisms have increased concerns as well. To formulate appropriate management plans, the amounts/volumes used and emitted of these chemicals must be regulated. However, no data are available on the use of most chemicals, particularly daily-use chemicals such as pharmaceuticals and personal care products (PPCPs). Herein, we tested eight activated sludge wastewater treatment plants (WWTPs) across Japan, each servicing populations of over 200,000, to investigate the emissions of 484 chemicals including 162 PPCPs. Twenty-four-hour composite samples were collected before and after the activated sludge component of treatment in each season of 2017. Targeted substances were solid-phase extracted and subsequently measured by LC-QTOF-MS-Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra Acquisition. The mean number of the detected substances and their mean total concentrations in inflows (n=32) and outflows (n=32) were 87 and 92 and 108,517 and 31,537 ng L-1, respectively. Pharmaceuticals comprised 50% of the screened chemicals in the inflow. The median removal efficiency was 31.3%: 29.2% for pharmaceuticals and 20.2% for pesticides, which were similar to those in the literature. Cluster analysis showed that spatial differences among the WWTPs are larger than seasonal differences in the same WWTP. Regardless, we detected seasonal differences in the amounts of substances in the inflows: the amounts of sucralose, UV-filters, and insecticides were larger in summer than in winter, whereas those of ibuprofen and chlorpheniramine were larger in winter than in summer. The total inflow and outflow population equivalent loads estimated using wastewater volume, detected concentrations, and populations were 44.7 and 13.0 g 1,000 capita-1 d-1, respectively. The extrapolated total annual Japan-wide inflow and outflow loads were 2,079 and 671 tons y-1, respectively. Using the data obtained in this study, we identified 13 candidates of marker substances for estimating real-time population in a sewage treatment area and 22 candidates of marker substances for sewage contamination.

— 資料 Natural Resources Letters —

胚培養による宇宙リンゴ"ふじ"の苗生産

Embryo culture method for production of space apple 'Fuji' seedlings

小山田智彰¹¹, 鞍懸重和¹¹, 佐藤晋也²¹, 越谷晋樹³¹, 佐藤雄大³¹

¹⁾ 岩手県環境保健研究センター 〒020-0857 岩手県盛岡市北飯岡1-11-16

²⁾ Satoshin Project Office 8113
 〒038-0042 青森県青森市大字新城字山田587-131
 ³⁾ 青森県立五所川原農林高等学校
 〒037-0093 五所川原市大字一野坪字朝日田12-37

Tomoaki Oyamada¹⁾, Shigekazu Kurakake¹⁾, Shinya Sato²⁾, Shinji Kosiya³⁾, Yudai Sato³⁾

1) Iwate Prefectural Reserach Institute for Environmental Sciences and Public Health. 1-11-16, Kitaiioka, Morioka, Iwate 020-0857, Japan

2) Satoshin Project Office 8113. 587-131, Yamada, Shinjo, Aomori, Aomori 038-0042, Japan

3) Aomori Prefectural Goshogawara Agriculture and Forestry High School. 12-37, Asahida, Ichinotubo, Goshogawara, Aomori, 037-0093, Japan

受付日:2020年2月18日 受理日:2020年5月11日

要 旨

青森県立五所川原農林高校は弘前実業高校藤崎校舎と協力して「宇宙教育プロジェ クト事業」に参加した.リンゴ "ふじ"を収穫して果実から種子を採取した後,乾燥 による保存処理を行って「準原木のふじ(40粒)」と「標準木のふじ(40粒)」の種子 80 粒を準備した. この種子をスペースシャトル「アトランティス号」に搭載して国際 宇宙ステーション「きぼう」に運び、6ヶ月間宇宙に滞在させた.地球帰還後、発芽試 験に取り組んだが発芽に至らなかった.そこで,植物組織培養技術を持っている岩手 県環境保健研究センターで胚培養による発芽試験を実施した.植物成長調節物質とし てオーキシンのインドール酪酸(IBA)とサイトカイニンのチジアズロン(TDZ)を添 加した培地で、IBA の添加量を多くしたオーキシン優占区において最も高い発芽率を 示したが、この苗には「下胚軸の異常伸長」と「幼根の短化」が多発生し、さらに、 根が培地から逆方向に向かう「反重力伸長」も発生した. そこで、培地固形物質に紙 とバーミキュライトを混合成型した「ペーパーライト培地」に苗を継代し、培養容器 に自作した無菌通気フィルターを設置した「無糖培地培養法」による育成培養に取り 組んだところ,苗の成長が進んだ.この取り組みで作出した宇宙リンゴの苗15個体(標 準木の苗 8 個体, 準原木の苗 7 個体)を五所川原農林高校に提出した. 今後, 宇宙リ ンゴの初収穫が実現すれば、高校教育や地域資源としての活用が期待される.

キーワード:国際宇宙ステーション,胚培養,ペーパーライト培地,宇宙リンゴ

く報 文>

岩手県における東日本大震災津波の影響調査:海浜性希少植物の動態*

小山田智彰**·鞍懸重和**·千崎則正**

キーワード ①東日本大震災 ②津波 ③岩手県沿岸部 ④海浜性希少植物 ⑤いわてレッドデータブック

要 旨

2011年3月11日の午後2時46分に三陸沖を震源とするマグニチュード9.0の巨大地震によって大津波が発生した。この東日本大震災の津波は岩手県沿岸部に甚大な被害をもたらし、海岸植生にも多大な影響を及ぼした。2011年は、全域調査を実施した。2012年から2015年までは調査対象種を消失の危険性が高い植物に限定して調査し、2016年は震災5年後として全域調査を行った。2017年から2019年は消失の危険性が高い植物に限定して調査した。2020年は、6月から9月の期間中に調査未実施であった箇所も追加して大規模調査を行った。

東日本大震災発生から9年が経過し、この間に復興工事が進んで震災前とは景観が大きく変化した。また、大雨や台風・ 高潮などの自然災害も発生している。今回は、震災後の海浜性希少植物の状況について報告する。

1. はじめに

東日本大震災津波が発生した 2011 年の調査では,津 波によって消失した「海浜性希少植物(以下,希少植物)」 は,砂浜・礫浜を自生地とするものが多かった¹⁾。消失 した希少植物の生育基盤の改変の大きさと個体数の減 少には正の相関がみられた。これらの結果から,海浜性 植物の消失・減少はその生育地である砂浜・礫浜が流出 したことにより引き起こされたと考えられた。東日本大 震災から9年が経過し,その後の状況にも変化があるこ とから,いわてレッドデータブック(IRDB)に記載され ている希少植物を中心に残存調査を行い,確認した全種 の消失リスク評価を行って動態を把握した。

2. 方法

2020年に実施した調査地を図1に示し,調査地名および 調査種名を表1に示した。2020年の6月から8月にかけ,青 森県境から宮城県境までの岩手県沿岸部において,東日 本大震災発生前に確認し,震災直後に消失しなかった IRDB記載植物の自生地と,震災直後から2016年に確認さ れた希少植物の自生地の計17調査地,また新規の調査地 16調査地を加えた計33の調査地について調査した。

調査は、図1に示した調査地内の希少植物が生育する地 点(以下,調査地点)を踏査し、希少植物の有無、個体 数を記録後、生育位置をGPSに記録した。また、表2に示 した「自生地消失リスク評価表」を用いて、津波前後と 2016年の調査で希少植物を確認した29調査地点について、 「繁殖」、「立地」、「採集」、「個体数」、「自然災害の影響」、 「生育基盤の変化」の6項目を5段階で評価し、得点が高 いほど消失リスクが高い種として評価した。

本調査は2011年と2016年に同様の調査を実施しており、 震災直後自生地が消失しなかった調査地点と、2016年に 個体が確認できた調査地点のデータを経年データとして 使用した。

希少植物の有無の情報は、震災直後から2016年,2016 年から2020年の消失率の算出に用い,2011年から2020年 の調査内で,岩手県の希少植物の分布にとって重要な消 失,新規確認事例を抽出した。

*Survey on influence by the tsunami of the East Japan great earthquake disaster in Iwate Prefecture : Change of disappearance risks of coastal plants

〔全国環境研会誌〕Vol.45 No.4 (2020)

^{**}Tomoaki OYAMADA, Shigekazu KURAKAKE, Norimasa SENZAKI (岩手県環境保健研究センター) Iwate Prefectural Reserach Institute for Environmental Sciences and Public Health

No	市町村名	調查地名	種名	IRDB [*] ランク	備考	No	市町村名	譋查地名	種名	IRDB ランク	備考
1	洋野町	角の浜	オオアカバナ	А		14	宮古市	女遊戸海岸	カワラナデシコ	С	消失
			キタノコギリソウ	В		15		中の浜	ナミキソウ	С	2020年新規確認
2		八木港	ハマボウフウ	В		-			ハマベンケイソウ	D	2020年新規確認
3	久慈市	久慈川	ナミキソウ	С		(16)		崎山	-		確認なし
			ハマボウフウ	В		(17)		藤の川	-		確認なし
			シロヨモギ	В	2020年新規確認	(18)		津軽石川河口	ウミミドリ	А	
4		小袖海岸	ホソバエゾノコギリソウ	情報不足					マルミノシバナ	А	2019年新規確認
5	野田村	十府ヶ浦北	-		確認なし	(19		太田浜	エゾオグルマ	А	消失
6		米田海岸	ハマベンケイソウ	D	2020年新規確認	20		里海岸	アオノイワレンゲ	С	
$\overline{0}$	田野畑村	明戸海岸北	ハマボウフウ	В		-			エゾオオバコ	С	2020年新規確認
-			ナミキソウ	С		(21)	山田町	織笠川	エゾツルキンバイ	А	
			カワヂシャ	С		-			ウミミドリ	А	
8		明戸海岸南	エゾオオバコ	С	2020年新規確認	(2)	大槌町	吉里吉里海岸	エゾノコウボウムギ	А	2020年新規確認
~			ハマハタザオ	В	2020年新規確認	23		大槌川	カワヂシャ	С	消失
9		平井賀海岸	-		確認なし	24		小槌川	カワヂシャ	С	
(10)	岩泉町	小本海岸北	カワラナデシコ	С		25	釜石市	甲子川	カワヂシャ	С	
~			ハマハタザオ	В	2020年新規確認	26	大船渡市	小壁崎	カワラナデシコ	С	2020年新規確認
			エゾオオバコ	С	2020年新規確認	~			ハマヒナノウスツボ	-	
(11)		小本海岸南	ハマベンケイソウ	D		27		越喜来浪板海水浴場	-		確認なし
~			ナミキソウ	С		28		盛川	マルミノシバナ	А	
			ハマボウフウ	В	消失	~			カワヂシャ	С	消失
(12)	宮古市	沼の浜	スナビキソウ	А	2020年新規確認	(29)		長崎海岸	スナビキソウ	А	2020年新規確認
~			シロヨモギ	В	2020年新規確認	30	陸前高田市	大野海岸	アオノイワレンゲ	С	
			ハマベンケイソウ	D	2020年新規確認	-			ナミキソウ	С	移植保全地
			ナミキソウ	С	2020年新規確認				ハマボウフウ	В	移植保全地
			ハマボウフウ	В	2020年新規確認	(31)		泊漁港	ハマナデシコ	А	2019年新規確認
			エゾオオバコ	С	2020年新規確認	-			ハマナデシコ	А	消失
(13)		真崎灯台	ハマベンケイソウ	D	2020年新規確認	(32)		太陽海岸	-		確認なし
~			シロヨモギ	В	2020年新規確認	33		油崎	ハマヒナノウスツボ	-	2020年新規確認
			ハマボウフウ	В	2020年新規確認	Ŭ					
			アオノイワレンゲ	С	2020年新規確認						
			ハマハタザオ	В	2020年新規確認						
			カワラナデシコ	С	2020年新規確認						

表1 調査地と調査種および結果一覧

* 4:環境省レッドデータブックカテゴリーの「絶滅危惧 I類」の基準に相当する種、または岩手県固有で分布が局限しており、存続基盤が極めて脆弱な種。B:環境省レッドデータブックカテゴリーの「絶滅危惧 I類」の基準に相当する種、たは岩手県固有で分布が局限しており、存続基盤が極めて脆弱な種。B:環境省レッドデータブックカテゴリーの「絶滅危惧」の基準に相当する種。D:次のいずれかに該当する種、現状では絶滅の恐れはないが、最近減少が著しい等、Cランクに準ずる種、優れた自然環境の指標となる種、岩手県を南限または北限とする種や、特殊な分布をする種。

表2 消失リスク評価表

a.	繁殖	d. 個体数
•	自然状態での繁殖能力	・分布地点における個体数
5	ほとんど増殖が認められない	5 消失
4	弱い増殖力がある	4 10個体未満
3	中位の増殖力が認められる	3 10個体以上数十個体
2	著しい増殖力がある	2 100個体以上数百個体
1	強大な増殖能力がある	1 1,000個体以上
b.	立地	e. 自然災害の影響
۰.	ハビタットの消失危険度	・東日本大震災後の自然災害(台風・高潮)
5	極めて強い	5 完全に消失
4	強い	4 ほとんどが消失し復元が困難
3	中	 個体の減少が激しい
2	弱い	 個体の減少がある
1	無い	1 変化なし
c.	採集	f. 生育基盤の変化
•	選択的採集の危険度	 復興工事等の人為的な改変によるもの
5	極めて強い	5 完全な改変あり
4	強い	4 大規模な改変あり
3	中	3 部分的な改変あり
2	弱い	 2 一部に改変あり
1	無い	 変化なし

消失リスク得点は、各リスク項目6項目と、6項目を合計した「消失リスク合計得点」の平均値の算出に用い、 「震災前」、「震災直後」、「2016年」および「2020年」の 消失リスク得点の推移を示した。また消失リスク合計得 点については、震災前と震災直後、震災直後と2016年、 2016年と2020年の3群を、FERをHolm法で調整後、ウィル コクソンの符号付順位検定で比較した。

3. 結果

3.1 岩手県の海浜性希少植物の消失・確認事例

2011年は、東日本大震災が発生する前に確認してい

た希少植物情報を中心に対象種の確認調査を実施した。 沿岸北部の調査では,洋野町角の浜において確認したオ オアカバナが岩手県初確認となり,いわてレッドデータ ブックに新たな絶滅危惧種として登載された²⁰。沿岸中 央部の宮古市織笠川河口では,塩性湿地に見られるマル ミノシバナが津波によって激減し,また,太田浜の砂浜 に自生しているエゾオグルマも津波によって激減した (写真1)。このエゾオグルマは,環境省指定植物群落 調査の指定地にされ,国内分布の南限とされている。こ こは,砂浜にまとまった小集団を形成していたが,津波 によって砂浜が大量に流失した。2011年の調査時に掘 り出されたエゾオグルマ14個体を見つけたため,自生 地付近に植え戻した³⁰。

2016年は、復興工事の環境アセス調査からもたらさ れた情報を追加して調査を実施した。沿岸北部の調査で は、田野畑村明戸海岸でカワヂシャを河口付近で確認し た。岩手県北部におけるカワヂシャの分布は稀である。 また沿岸南部の調査では、盛川でマルミノシバナを確認 し、県内では貴重な自生地となる。2011年に絶滅回避 策として移植を行ったエゾオグルマは、移植後初の開花 を確認したが、その後の台風や高潮よる移植地の土壌浸 食が確認された。

2020年は、全域調査を行いながら東日本大震災以降から確認できていないスナビキソウとハマハタザオの確認を行った。その結果、宮古市の沼の浜と陸前高田市の長崎海岸においてスナビキソウを確認し、田野畑村の

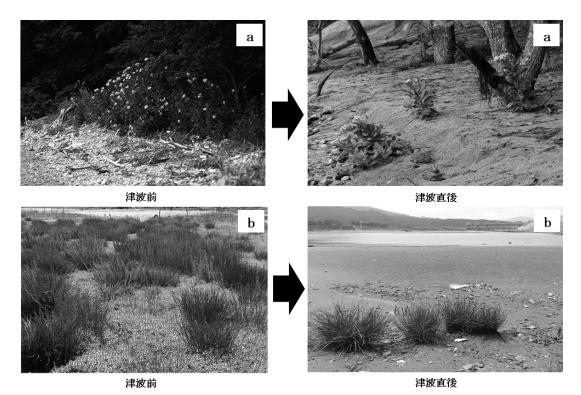


写真1 東日本大震災の津波によって激減したエゾオグルマ(a)とマルミノシバナ(b)

写真2 2020年の調査で新規確認したハマハタザオ(a)とスナビキソウ(b)

明戸海岸南側と岩泉町の小本海岸北側および宮古市の真 崎灯台においてハマハタザオを確認した(写真2)。この 調査では33の調査地で調査を行い,12の調査地において 11種のIRDB記載植物を新規確認したが,6調査地で5種の 消失が確認された(表1)。また,本県では太田浜のみに 自生しているエゾオグルマは,消失したことが明らかに なった。

3.2 海浜性希少植物の消失率と消失リスク得点の 推移

「消失リスク評価表」を用いた調査から,継続確認してきた希少植物を表3に示した。

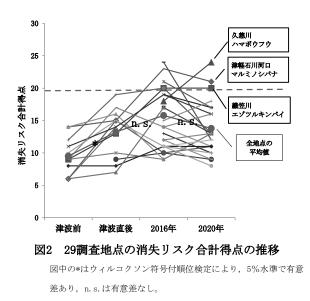
津波直後から 2016 年の消失率は 7.6%であったが, 2020 年の消失率は 21.4%に増加した。

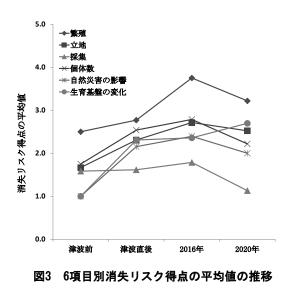
津軽石川河口のウミミドリは, 生育地点にコンクリー トブロックが新設されたため, 2016 年に消失を確認し た。小本海岸南側のハマボウフウは, 道路工事により砂 利が敷かれたため, 2020 年に消失を確認した。大槌川 のカワヂシャは, 自生していた橋の基礎補強工事によっ て 2016 年には個体数が減少し, 2020 年に消失を確認し

調査地名	種名	津波前	津波直後	2016年	2020年
角の浜	オオアカバナ		9	10	9
角の浜	キタノコギリソウ	14	15	10	11
八木港海岸	ハマボウフウ			20	13
久慈川	ナミキソウ	14	16	9	13
久慈川	ハマボウフウ			18	24
小袖海岸	ホソバエゾノコギリソウ	9	10	9	13
明戸海岸北	ハマボウフウ			14	11
明戸海岸北	ナミキソウ			13	10
明戸海岸北	カワヂシャ			19	17
小本海岸北	カワラナデシコ			24	12
小本海岸南	ナミキソウ	8	8	11	11
小本海岸南	ハマベンケイ			17	13
小本海岸南	ハマボウフウ			18	消失
津軽石川	ウミミドリ	6	14	消失	
津軽石川 (塩生湿地)	マルミノシバナ	6	15	23	21
津軽石川(塩生湿地)	ウミミドリ			11	8
太田浜	エゾオグルマ	12	19	20	消失
里海岸	アオノイワレンゲ			12	9
織笠川	ウミミドリ	10	15	11	10
織笠川	エゾツルキンバイ	9	13	20	20
大槌川	カワヂシャ	6	7	17	消失
小槌川	カワヂシャ	11	14	19	16
甲子川	カワヂシャ			21	17
盛川	カワヂシャ			20	消失
盛川	マルミノシバナ			15	18
大野海岸	ハマボウフウ	9	17	14	16
大野海岸	ナミキソウ			11	12
大野海岸	アオノイワレンゲ			12	13
泊漁港	ハマナデシコ			24	消失

表3 消失リスク評価の結果一覧

た。盛川のカワヂシャは、河川工事が行われた後に衰退 して 2020 年には消失を確認した。泊漁港のハマナデシ コは公共トイレの敷地内に自生していたが、漁具の仮置 場になるなどし、2020 年に消失を確認した。太田浜の エゾオグルマは、津波発生後に行った移植措置によって 生存を維持していたが、2019 年に発生した台風 19 号に よって移植地を含む砂浜が破壊され、2020 年の調査に よって消失を確認した。


消失リスク評価を実施した 29 調査地点について,評価6項目の消失リスク合計得点の推移を図2に示した。


消失リスク合計得点の震災前,震災直後,2016 年お よび 2020 年の平均値は,それぞれ 9.5 (n=12),13.2 (n=13),15.8 (n=28) および 13.8 (n=23) であった。

震災直後の消失リスク合計得点は震災前より有意に 高く,震災直後と2016年,2016年と2020年のそれぞ れの消失リスク合計得点に有意差はなかった。

全地点の平均値の推移は, 震災前より震災直後が高く, 2016年で最も高くなった。2020年は,2016年よりも低 くなったが震災前および震災直後に比べると高かった。 この中で, 久慈川河口のハマボウフウと津軽石川河口の マルミノシバナは高い得点で, 残存1個体となり消失寸 前であった。復興工事に伴って移植された織笠川河口の エゾツルキンバイは,298 個体から81 個体に激減して おり,得点が高くなった。 次に,消失リスク評価の「繁殖」,「立地」,「採集」, 「個体数」,「自然災害の影響」,「生育基盤地の変化」 の6項目に分け,それぞれの平均値を図3に示した。

その結果、「繁殖」の震災前、震災直後、2016年および2020年の消失リスク得点の平均値は、それぞれ、2.5(n=12),2.8(n=13),3.8(n=28)および3.2(n=23)であった。「立地」では1.7,2.3,2.7および2.5,「採取」では1.6,1.6,1.8および1.1,「個体数」では1.8,2.5,2.8

および2.2,「自然災害の影響」では,1.0,2.2,2.4および2.0,「生育基盤の変化」では1.0,2.3,2.4および2.7 であった。「採集」については,震災前から2016年まで 大きな変化はなく,2020年は減少傾向を示した。その 他の5項目は,震災前より震災直後が高く,2016年で 最も高くなった。「生育基盤の変化」の1項目のみが2016 年よりも2020年が高くなった。これは,復興時工事を 伴う人為的な改変を指しており,工事が自生環境に影響 を及ぼしていることが示唆された。

4. 考察

4.1 岩手県の海浜性希少植物の消失・確認事例

本調査は、東日本大震災の発生前から岩手県沿岸部で 確認していた希少植物の被害状況を把握するために始め たものである。2011年の調査では、震災前に確認されて いた自生個所の破壊状況と対象植物の残存調査を行った。 その結果、写真1のように砂浜や礫浜および塩生湿地に自 生する希少植物の減少が顕著にみられた。これは、津波 によって自生基盤となる土壌が流失し、自生していた希 少植物に被害が及んだものと考えられた。

2016年は、東日本大震災から5年が経過し、復興工事が 盛んになってきた時期でもある。巨大防潮堤の建設工事 が進み、そのために実施された環境アセス調査からもた らされた情報を追加して大規模調査を実施した。この報 告書に登載されていた希少植物調査では、大野海岸のハ マボウフウとナミキソウ、甲子川のカワヂシャ、八木港 海岸のハマボウフウ、盛川のカワヂシャなどが新規確認 されたが、宇留部海岸のハマボウフウとナミキソウ、小 本海岸北側のハマハタザオ、片岸海岸のハマベンケイソ ウ、小白浜海岸のハマベンケイソウは確認できなかった。 これは、多くの工事が同時進行する中で、希少植物の確 認や保全策の実施に差が生じていることが原因の一つに なっていると思われた。織笠川のエゾツルキンバイにつ いては、津波後に残存個体を確認したものの消失が確認 され、その後の調査で織笠川の別地点において自生が確 認された。本種は、津波以降、生育地の大部分が消失し ており、重点的な保護対策を講じなければ県内絶滅する 可能性が高いと思われた。

津波後で掘り出されたため、絶滅回避策として移植し ていたエゾオグルマは初開花を確認したが、台風や高潮 等による移植地の土壌浸食が心配されたことから、継続 したモニタリングと追加の保全対策が必要であると思わ れた。

2020年の調査は、これまで確認していた希少植物の継 続調査を行いながら、東日本大震災以降の調査で確認で きていなかったスナビキソウ(IRDB: Aランク)とハマハ タザオ(IRDB: Bランク)の2種の確認を調査目的として 実施した。その結果、宮古市の沼の浜と陸前高田市の長 崎海岸においてスナビキソウを確認した。宮古市の沼の 浜の自生地は、工事のために堆積した砂の上に発生して おり、この砂が工事に利用されれば消失する可能性が高 い(写真2)。また、陸前高田市の長崎海岸で確認したス ナビキソウは、個体数は多いものの開花がなく、震災か ら年月を経て一斉に発芽した幼植物体であると推察され た。ハマハタザオは,明戸海岸南側,小本海岸北側,真 崎灯台で確認したが1~数個体と少なく,継続調査が必要 と思われる(写真2)。今回の調査では、12の調査地で11 種のIRDB記載植物を新規確認しており、新たな希少種の 自生個所として記録することができたが、6地点で5種の 消失も確認されており,継続したモニタリング調査が植 物保護の観点からも重要であると考えさせられた。また, 岩手県内におけるエゾオグルマは消失したことが明らか になった。津波の被害を受けて移植等の保全措置を実施 し、生存を確認した中での消失であることから、この反 省を踏まえ、今回の経験を希少植物の保護策に活かすこ とが重要と考える。

4.2 海浜性希少植物の消失率と消失リスク得点 の推移

表3に示した消失リスク評価の結果一覧から,津波前から津波後,2016年,2020年までの消失リスクの合計得点が上昇傾向にある種は,消失する危険性が高いと思われる。実際に消失した希少植物は,それ以前の消失評価の合計得点が20点に近い得点を示すもの(表3)が多くみられたことから,20点前後に達した希少植物は,消失する可能性が高い種として予測できる。表3および図2より, 久慈川のハマボウフウが24点,津軽石川河口のマルミノ シバナが21点,織笠川のエゾツルキンバイが20点と高い ことから,消失の危険性が最も高い希少植物として注視 しなければならない。

図3に示した項目ごとの消失リスク平均得点の推移よ り、「繁殖」、「個体数」、「自然災害の影響」、「生 育基盤の変化」が「採集」よりも高くなり、消失リスク の主要因となっていると推察された。これは、震災後か ら9年を経過し、大震災直後の津波による影響から、その 後の復興工事を含めた土地改変による地盤の変化が影響 していると思われる。土地改変が生じる工事箇所に希少 植物が確認された場合は、自生地の保全を講じて消失リ スクを低減させることが重要となる。

5. まとめ

2011年の調査で確認したオオアカバナは、本県初確認 となり、いわてレッドデータブックに絶滅危惧種として 登載された(写真3)。2020年の調査で、宮古市の沼の浜 と陸前高田市の長崎海岸においてスナビキソウを確認し た。また、田野畑村の明戸海岸南側、岩泉町の小本海岸 北側、宮古市の真崎灯台においてハマハタザオを確認し た。一方で、久慈川のハマボウフウ、津軽石川河口のマ ルミノシバナ(写真4)、織笠川のエゾツルキンバイ(写 真5)は、消失する可能性が高い。絶滅回避策として移植 を行ったエゾオグルマは、消失した。

消失リスク評価から見た全体的な傾向としては以下の ようであった。東日本大震災直後では52.8%で消失して いた¹⁾のに対し,2016年は7.6%,2020年は21.4%であっ た。2020年の調査では,消失リスク評価の6項目のうち, 「生育基盤の変化」のみが増加傾向を示し,消失してい た6地点中5地点で工事による人為的な影響が確認された。

以上から,東日本大震災の津波によって自生地が消失 し消失リスクが高まった後,残存した希少植物の消失リ スクは,震災後と同様に高い消失リスクを維持しており, 依然として希少植物の消失は散見している。今後は,工 事等によって個体数が減少している希少植物を中心に保 護策を進めることが望ましい。

6. 謝辞

2011年の調査は,前岩手県環境影響評価技術審査会委員の片山千賀志氏に協力をいただいた。吉里吉里海岸の エゾノコウボウムギは,釜石植物の会会長の鈴木弘文氏 より情報をいただいた。津軽石川河口のマルミノシバナ は,岩手県立博物館主任専門学芸員の鈴木まほろ氏より 情報をいただいた。調査地の作図は,岩手県環境保健研 究センター地球科学部の千葉文也自然環境調査技術員よ り協力をいただいた。ここに記して感謝を申し上げる。

7. 引用文献

- 小山田智彰, 鞍懸重和, 新井隆介, 山内貴義, 片山千 賀志:東日本大震災の津波による岩手県における海浜 性植物の消滅.薬用植物研究, 34(1), 37-48, 2012
- 2) 岩手県環境生活部自然保護課:いわてレッドデータブ ック,44,2014
- 小山田智彰:津波による海浜性植物への影響.グリーン・エージ465:16-19,2012

写真3 オオアカバナ(2020年7月20日撮影)

写真4 マルミノシバナ(2020年6月26日撮影)

写真5 エゾツルキンバイ(2020年7月22日撮影)