6. 巻末参考資料

6.1 参考検討:津波到達時間と避難に関する検討

1) 久慈市 市役所周辺の津波到達時間と避難に関する検討

参考図:日本海溝(三陸・日高沖)モデルケース①における久慈市役所周辺の津波 30cm 到達時 間分布

- 久慈市沿岸の地域では、津波 30cm 到達時間が概ね 30 分~40 分で分布している。
- 冬季の避難速度は 1.79km/h≒30m/min であることから、30 分で到達できる距離は約 900m となる。
- さらに、早期避難の場合でも、避難開始時間は7分である。
- そのため、今回のケースでは早期避難の場合でも浸水域外に到達する前に津波が到達してしまう地域が存在する。
- 被害ゼロを目指すためには、避難路の整備による避難速度の向上、自動車による避難の検討、
 浸水想定区域内の避難施設(ビル・タワー)の建設・指定などの対策が必要となる。

2) 宮古市 市役所周辺の津波到達時間と避難に関する検討

- 宮古市沿岸の地域では、津波 30cm 到達時間が概ね 20 分~40 分で分布している。
- 冬季の避難速度は 1.79km/h≒30m/min であることから、30 分で到達できる距離は約 900m となる。
- 宮古市においては、市役所周辺以外は浸水域外までの距離が短い傾向にある。
- そのため、早期避難による減災効果は高いと考えられる。

3) 久慈市、宮古市、陸前高田市、釜石市の市役所周辺の浸水範囲と避難参考距離の比較

注) 久慈市・宮古市・釜石市は日本海溝(三陸・日高沖) モデル ケース① 陸前高田市は東北地方太平洋沖地震の浸水域

- 上図は、久慈市、宮古市、陸前高田市、釜石市における浸水範囲と避難参考距離(900m)の 比較図である。
- いずれも、沿岸から河川に沿って平野部(低地)が広がっており、河川に沿って津波が遡上
 し平野部に浸水が広がっているが、平野部の広さはそれぞれで異なる。
- 平野部に市街地があり、平野部の中心より海側に人口が多く、かつ、平野部が広い場合に被 害が多く発生すると考えられる。
- 津波発生の条件が異なれば、津波到達時間、浸水深も異なるため、市町村それぞれで対策が 重要となる。

6.2 液状化の予測

(1) 液状化危険度と沈下量の予測

地盤の液状化予測手法は、浅部地盤を踏まえた上で、道路橋示方書に基づく FL 法による判定法 (地表面震度、地盤の N 値、地下水位、平均粒度等)により行う。

この手法では、地表から深度 20m まで実施するとともに、各地層での評価値である FL 値を用い て、地盤全体の液状化危険度(PL 値:液状化可能性指数)を予測する。液状化の予測を行う地盤 は、表 6.2-1 に示す微地形分類に対して実施する。

No.	微地形分類(地盤タイプ)	区分
1	沿岸地域	液状化検討対象外
2	山地	液状化検討対象外
3	丘陵	液状化検討対象外
4	火山地	液状化検討対象外
5	火山山麓地	液状化検討対象外
6	火山性丘陵	液状化検討対象外
7	岩石台地	液状化検討対象外
8	砂礫質台地	液状化検討対象外
9	火山灰台地	液状化検討対象外
10	谷底低地	液状化検討対象地形
11	扇状地	液状化検討対象地形
12	自然堤防	液状化検討対象地形
13	後背湿地	液状化検討対象地形
14	旧河道・旧池沼	液状化検討対象地形
15	三角州・海岸低地	液状化検討対象地形
16	砂州・砂礫州	液状化検討対象地形
17	砂丘	液状化検討対象地形
18	砂丘・砂州間低地	液状化検討対象地形
19	干拓地	液状化検討対象地形
20	埋立地	液状化検討対象地形
21	礫・岩礁	液状化検討対象外
22	河原	液状化検討対象外
23	河道	液状化検討対象外
24	湖沼	液状化検討対象外

表 6.2-1 液状化対象微地形分類

図 6.2-1 液状化の予測手法の流れ

液状化可能性の評価については、「道路橋示方書・同解説(2017年12月発行)」による、砂質 土層の液状化判定手法を採用した。

地震動計算結果より、地表から 20m までの地中のせん断応力(L)と液状化対象層の繰り返し三軸 強度比(R)を求め、液状化対象層ごとに液状化に対する抵抗率($F_L = R/L$)を求め、さらに地層全体 の液状化可能性指数(P_L)を評価する。

以下に計算の手順を示す。

動的せん断強度比Rについては、下記の方法で求めた。

$$\begin{split} R &= C_W \cdot R_L \\ R_L &= \begin{cases} 0.082 \sqrt{N_a/1.7} & (N_a < 14) \\ 0.082 \sqrt{N_a/1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{4.5} & (N_a \ge 14) \end{cases} \end{split}$$

$$C_W$$
:地震時特性による補正係数(タイプ I の地震動の場合)
 $C_W = 1.0$

N値及びFcの算出については、亀井ほか(2002)の式に従った。

$$N_a = N_1 + \Delta N$$

$$\Delta N = \begin{cases} 0.0\\ 20.769 \times \log_{10}(F_c) - 18\\ 15.27 \end{cases} \qquad (F_c < 8\%)$$

 $\left(8 \% \le F_c \right)$ < 40 % $\left(F_c \ge 40 \% \right)$

ただし、

- N_a : 粒度の影響を考慮する補正N値
- N₁:有効上載圧 100kN/m²相当に換算したN値
- ΔN:東京低地における細粒分の影響を補正するN値

地震時せん断応力比Lについては、下記の方法で求めた。

 $L = \gamma_d \cdot K_s \cdot \sigma_V / \sigma_V'$ $\gamma_d = 1.0 - 0.015x$

ここに、

- γ_d:地震時のせん断応力比の深さ方向の低減係数
- K_s:液状化に対する設計震度
- **x**: 地表面からの深さ(m)
- σ_{V} :地表面からの深さxにおける全上載圧(kN/m^{2})
- σ'_{V} : 地表面からの深さxにおける有効上載圧(kN/m²)

 $K_s = A_{max}/9.8$

A_{max}:地表最大加速度(m/s²)
 9.8:重力加速度(m/s²)

地表最大加速度は、地表の震度より、童・山崎(1996)による計測震度Iと最大加速度PGAの関係 式を用いて求めた。

$$PGA = 10^{-0.23 + 0.51 \cdot I}$$

R及びLから、液状化に対する抵抗率を求め、震度の重み係数を考慮して F_L を積分し、液状化指数 P_L を計算する。

$$F_L = R/L$$
$$P_L = \int_0^{20} (1 - F_L)(10 - 0.5x) dx$$

ここに、 P_L :液状化指数 F_L :液状化に対する抵抗率 x:地表面からの深さ(m)

メッシュごとのP_L値より、以下の基準で液状化可能性を評価する。

図 6.2-2 PL値の算定

表 6.2-2 PL値による液状化危険度判定区分(岩崎他(1980))

危険度ランク	極めて低い	低い	やや高い	極めて高い
P _L 值	$P_L = 0$	$0 < P_L \leq 5$	$5 < P_L \le 15$	$15 < P_L$
	液状化に関する詳	特に重要な構造物	重要な構造物に対	液状化に関する詳
調本及び対策	細な調査は不要	に対して、より詳細	しては、より詳細な	細な調査と液状化
調査及び対象の必要性		な調査が必要	調査が必要	対策は不可避
の必安住			液状化対策が一般	
			的には必要	

液状化に伴う地盤の沈下量*S*は、建築基礎構造設計指針(2001)に示されている補正*N*値と繰り返しせん断ひずみの関係を用いて、補正*N*値と応力比のプロット点に対応する繰り返しせん断ひず みを隣接するγ_{cv}曲線の対数補間により求める。

繰り返しせん断ひずみ 8%の曲線より左側にプロットされる場合には γ_{cy} =8%とし、0.5%より 右側にプロットされる場合には、 γ_{cy} =0.5%とする。

繰り返しせん断ひずみ γ_{cy} を体積ひずみ ε_V として読み替える。

沈下量Sは以下のように推定した。

$$S = \sum_{i=0}^{n} (H_i \times \varepsilon_{Vi})$$

ここに、

 $H_i: F_L < 1.0$ となる土層iの層厚

 ε_{Vi} : $F_L < 1.0$ となる土層iの体積ひずみ

 $n: F_L < 1.0$ となる土層数

※本検討では、図中の縦軸「応力比 au_d/σ'_z 」に「地震のせん断応力比L」を適用する

図 6.2-2 補正 N 値と繰り返しせん断ひずみの関係 (建築基礎構造設計指針、2001 年 10 月、日本建築学会より) 液状化液状化対象微地形に対して、液状化解析を行い、液状化危険度及び沈下量を算出した。 なお、液状化危険度分布図内の液状化履歴は、東北地方太平洋沖地震のものである。

図 6.2-3 「日本海溝(三陸・日高沖)モデル」の液状化危険度分布図

図 6.2-4 「日本海溝(三陸・日高沖)モデル」の液状化沈下量分布図

図 6.2-5 「千島海溝(十勝・根室沖)モデル」の液状化危険度分布図

図 6.2-6 「千島海溝(十勝・根室沖)モデル」の液状化沈下量分布図

図 6.2-8 「東北地方太平洋沖地震」の液状化危険度分布図

図 6.2-9 「東北地方太平洋沖地震」の液状化沈下量分布図

(2) 液状化による建物被害リスク

液状化による建物被害リスクは、藤原ほか(2018)より、以下の方法で算出した。

$$R_{lia} = P_l \times R_{pa} \times R_{bl}$$

ここに、 R_{liq}:液状化による建物被害リスク P_l:液状化発生確率 R_{pa}:液状化が発生したメッシュの液状化面積率 R_{bl}:液状化が発生した場合の建物被害リスク

液状化発生確率は、全国 250m メッシュ別の微地形区分を用いて発生確率を計算する松岡ほか (2011)を用いて算出した。

$$P_l = \phi \left[\frac{I - \mu}{\sigma} \right]$$

ここに、 φ[·]:正規分布の累積分布関数 *I*:計測震度 μ:平均値 σ:標準偏差

また、最小二乗法による回帰分布から得られたパラメータを表 6.2-3 エラー!参照元が見つか りません。に、液状化発生確率を図 6.2-10 に示す。なお、全壊率の計算目的は液状化が発生しや すいメッシュを評価することであるため、表 6.2-3 の①~④に属する微地形区分のみを計算対象 とし、砂礫質台地は除外した。

No.	微地形区分	平均值μ	標準偏差 σ
	自然堤防、旧河道、砂丘末端、緩斜面、	6.960	0.761
Û	砂丘間低地、干拓地、埋立地		
	扇状地、扇状地(傾斜<1/100)、砂州・	7.160	0.773
2	砂礫州		
3	後背湿地、三角州・海岸低地、砂丘	7.906	0.993
4	砂礫質台地、谷底低地、谷底低地(傾斜	7.231	0.628
	<1/100)		
5	上記以外	9.873	1.197

表 6.2-3 微地形区分による回帰分布から得られたパラメータ

図 6.2-10 グループごとに統合した時の計測震度と液状化発生確率の関係

液状化が発生したメッシュ内の液状化面積率は、1983年日本海中部地震や2004年新潟県中 越地震の被害データを基に設定した山本ほか(2009)の微地形区分ごとの液状化面積を適用し た(表 6.2-4)。液状化が発生した場合の建物被害リスクは、1960年以前築の木造建物を対象 とし、中央防災会議(2003)の手法を用いた(表 6.2-5)。

微地形区分	液状化面積率	微地形区分	液状化面積率	
谷底低地	3%	旧河道	25%	
扇状地	1%	砂州・砂礫州	5%	
自然堤防	10%	砂丘末端緩斜面	15%	
後背湿地	3%	砂丘間低地	5%	
	(日本海側)	砂丘	5%	
三角州・	10%	干拓地	15%	
海岸低地	(太平洋側)	埋立地	20%	
	2%			

表 6.2-4 微地形区分ごとの液状化面積率

表 6.2-5 液状化発生時の建物被害リスク

木造	建物	非大道	造建物
1960 年以前築	1961 年以降築	杭なし	杭あり
13.3%	9.6%	23.2%	0.0%

各地震動における液状化発生確率と液状化による建物被害リスクを以下に示す。液状化が発生 した際の建物被害リスクは、「1960年以前築の木造建物」を対象とした。なお、追加の検証とし て、計測震度 5.15(震度 5 強相当、最大加速度 250gal)の地震を仮定した際の結果も示す。

図 6.2-11 「日本海溝(三陸・日高沖)モデル」の液状化発生確率

図 6.2-12 「日本海溝(三陸・日高沖)モデル」の液状化による建物建物被害リスク

図 6.2-13 「千島海溝(十勝・根室沖)モデル」の液状化発生確率

図 6.2-14 「千島海溝(十勝・根室沖)モデル」の液状化による建物被害リスク

図 6.2-15 「東北地方太平洋沖地震」の液状化発生確率

図 6.2-16 「東北地方太平洋沖地震」の液状化による建物被害リスク

図 6.2-17 「計測震度 5.15 (震度 5 強)相当」の液状化発生確率

6.3 崖崩れ(土砂災害)の予測

崖崩れ等における危険度予測は、岩手県地震・津波シミュレーション及び被害想定調査(2004) より、斜面の危険度ランク(第一次判定ランク)と計測震度データの関係を用いたマトリクス 判定基準により判定した(表 6.3-1)。

第二次判守 ランカ	震度階級					
小田庄 ノン ソ	~5 弱	~5 弱	~5 弱	~5 弱		
(A)	D	В	A	А		
(B)	D	С	В	А		
(C)	D	D	С	В		

表 6.3-1 震度階級による判定ランクの振り分け

※ランクA:崩壊危険度が高い、ランクB:崩壊危険度がやや高い、

ランクC:崩壊危険度は低い、ランクD:崩壊発生の可能性が低い

急傾斜地崩壊の第一次判定ランクは、市町村が作成・公表している GIS データを使用し、表 6.3-2、表 6.3-3 に示すもので評価した。急傾斜地崩壊の第一次判定ランクの結果を図 6.3-1 に、 地震による急傾斜地崩壊の危険度予測結果を図 6.3-2~図 6.3-4 に示す。

表 6.3-2 急傾斜地崩壊危険箇所の危険度判定基準

項目	対象	基準	点数
	刻玉の支と	50 ≤ H	10
创 <u>五</u> 百(山)~		$30 \le H < 50$	8
赤?岨同(□/Ⅲ	科団の同さ	10≦H<30	7
		H<10	3
		$59^{\circ} \leq \alpha$	7
斜面勾配(α)	傾斜度	$45^{\circ} \leq \alpha < 59^{\circ}$	4
		$\alpha < 45^{\circ}$	1
	楼收达	オーバーハングあり	4
3 = / = / / / /	傾町形 (仄	オーバーハングなし	0
		亀裂が発達・開口しており転石・浮石が点在する	10
	地表の状況	風化・亀裂が発達した岩である	6
斜面の地盤		礫混じり土、砂質土	5
		粘質土	1
		風化・亀裂が発達していない岩である	0
主人の同さ	主上の同さ	0.5m 以上	3
衣工の厚さ	衣工の厚さ	0.5m 未満	0
~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	有	2
房小	房小	無	0
		新しい崩壊跡がある	5
落石/崩壊頻度	崩壊履歴	古い崩壊跡がある	3
		崩壊跡は認められない	0

# (日本道路協会道路震災対策委員会(1986)より)

表 6.3-3 基準要素点別斜面危険度ランク表

斜面の危険度ランク	表 6 3-2 によろ其進要素占	
(第一次判定ランク)	式 0.5 2 10 5 9 至 平 女 来 M	
ランク a	24 点以上	
ランク b	14~23 点	
ランクc	13 点以下	



図 6.3-1 急傾斜地崩壊の第一次判定ランク



図 6.3-2 「日本海溝(三陸・日高沖)モデル」の急傾斜地崩壊の危険度予測結果



図 6.3-3 「千島海溝(十勝・根室沖)モデル」の急傾斜地崩壊の危険度予測結果



図 6.3-4 「東北地方太平洋沖地震地震」の急傾斜地崩壊の危険度予測結果

山腹崩壊の第一次判定ランクは、市町村が作成・公表している GIS データを使用した。第一次 判定ランクは、山地被災害危険地区調査要領(H28 林野庁)に従い、表 6.3-4~表 6.3-7 に示すも ので評価されている。急傾斜地崩壊の第一次判定ランクの結果を図 6.3-5 に、地震による急傾斜 地崩壊の危険度予測結果を図 6.3-6~図 6.3-8 に示す。

調査項目		玉字	区分	地質						
		甲位		第1類	第2類	第3類	第4類	第5類	第6類	第7類
			0~30	0	0	0	0	0	0	0
			31~50	6	22	13	12	31	23	14
1	傾斜	%	51~70	32	47	46	30	61	49	36
			71~90	49	60	51	42	71	66	60
			91~	54	64	46	52	61	57	70
			凹形	23	27	22	22	31	28	30
0	縦断		平滑	8	18	16	12	18	17	8
Ζ	面形		複合	0	15	0	0	0	21	0
			凸形	0	0	4	4	16	0	4
	横断 面形	度	~150	12	4	22	22	31	28	30
3			151~210	23	27	19	12	12	15	20
			211~	0	0	0	0	0	0	0
		采 m	0.5 以下	0	0	0	0	0	0	0
Л	土層深		0.5~1.0以下	5	5	3	3	4	4	6
4			1.0~2.0 以下	8	9	7	7	10	9	10
			2.0 超	15	18	15	15	20	19	20
			1	26	31	25	25	35	32	34
			2~3	39	46	36	37	51	47	50
5	齡級		4~7	28	33	28	28	37	34	36
			8~11	26	31	25	25	35	32	34
			12 以上	23	27	22	22	31	28	30

表 6.3-4 急傾斜地崩壊危険箇所の危険度判定基準 (日本道路協会道路震災対策委員会(1986)より)

※第1類:火山性の第四紀堆積物

第2類:水成の第四紀堆積物

第3類:新第三紀層の堆積岩

第4類:古第三紀以前の堆積岩

第5類:火山岩

第6類:半深成岩·深成岩

第7類:変成岩

表 6.3-5 非多雨地域における山腹崩壊危険度点数表 (その2)

危険度	表 6.3-4 による危険度点数
al	125 点以上
b1	115 点以上 125 点未満
c1	100 点以上 115 点未満

表 6.3-6 被災危険度判定表

危険度	公共施設等の種類及び数量
a2	公用若しくは公共用施設(道路を除く)又は
	10 戸以上の人家がある場合
b2	5 戸以上 10 戸未満の人家がある場合
c2	5 戸未満の人家がある場合

表 6.3-7 山腹崩壊の危険度判定表(第一次判定ランク)

危険度	危険度点数
(A)	a1-a2、a1-b2、b1-a2
(B)	a1-c2、b1-b2、c1-a2
(C)	b1-c2、c1-c2、c1-b2



図 6.3-5 山腹崩壊の第一次判定ランク



図 6.3-6 「日本海溝(三陸・日高沖モデル)」の山腹崩壊の危険度予測結果



図 6.3-7 「千島海溝(十勝・根室沖モデル)」の山腹崩壊の危険度予測結果



図 6.3-8 「東北地方太平洋沖地震」の山腹崩壊の危険度予測結果

地すべり崩壊の第一次判定ランクは、市町村が作成・公表している GIS データを使用した。 第一次判定ランクは、山地被災害危険地区調査要領(H28 林野庁)に従い、表 6.3-8~表 6.3-11 に示すもので評価されている。急傾斜地崩壊の第一次判定ランクの結果を図 6.3-9 に、地震に よる急傾斜地崩壊の危険度予測結果を図 6.3-10~図 6.3-12 に示す。

锢本百日	判定項目	危険度ランク			
诇且供口		а	b	С	d
地質	地質の走向				流れ盤
	岩石の変質又は風化の状況			著しい	ある
	断層及び破砕帯			破砕帯が	
				ある	
	表層土の土質			粘性土	
地況	滑落崖、亀裂、陥没又は隆起		3 種類	2 種類	1種類
			ある	ある	ある
	沼地、湿地の規則的な配列、		3 種類	2 種類	1種類
	異常な地下水の湧水		ある	ある	ある
植生	立木の傾斜等の異常	著しい		ある	
地すべり	地すべり活動	移動して	過去に移		
状況		いる	動した		

表 6.3-8 地すべり危険度ランク判定表 (その1)

危険度	表 6.3-8 による危険度点数
al	125 点以上
b1	115 点以上 125 点未満
c1	100 点以上 115 点未満

表 6.3-9 地すべり危険度ランク判定表 (その2)

表 6.3-10 被災危険度判定表

危険度	公共施設等の種類及び数量
a2	公用若しくは公共用施設(道路を除く)又は
	10 戸以上の人家がある場合
b2	5 戸以上 10 戸未満の人家がある場合
c2	5 戸未満の人家がある場合

表 6.3-11 地すべり崩壊の危険度判定表(第一次判定ランク)

危険度	危険度点数
(A)	a1-a2、a1-b2、b1-a2
(B)	a1-c2、b1-b2、c1-a2
(C)	b1-c2、c1-c2、c1-b2



図 6.3-9 地すべり崩壊の第一次判定ランク



図 6.3-10 「日本海溝(三陸・日高沖)モデル」の地すべり崩壊の危険度予測結果







図 6.3-12 「東北地方太平洋沖地震」の地すべり崩壊の危険度予測結